If it's not what You are looking for type in the equation solver your own equation and let us solve it.
343x^2-42x-1=0
a = 343; b = -42; c = -1;
Δ = b2-4ac
Δ = -422-4·343·(-1)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-56}{2*343}=\frac{-14}{686} =-1/49 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+56}{2*343}=\frac{98}{686} =1/7 $
| F(x)=-2x^2-4x-4 | | z/10+8=3 | | 5x+1=4x−8 | | 2(2x-1)=4x+8 | | 1/2p+2=11 | | 12(^x^2(-9))=9 | | 24c-15=14 | | 7x^2+41x+29=0 | | −3x=12 | | 2/2a-4=4 | | 12^x^2-9=9 | | -84=-7(p+4) | | 2(2q+1)=3(q-2 | | 12(^x^2-9)=9 | | x=7x= | | 3/7y+13=19 | | x+25=2x+35 | | −24−18x=38x | | 7.32=0.05x−0.18 | | p-0.20p=$648 | | 7.32=0.05x−0 | | 5a-4=60 | | P-0.20p=648 | | 4+2y=9y+2y | | 4n=1/5 | | 2x-4=-(4x+9) | | 4y-7=31 | | -4/3v=-28 | | |4x+3|=27 | | u/2+12=16 | | 4(x+0.1)=6(0.6) | | -h+4=9-h |